\(\int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx\) [359]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 82 \[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 b c}+\frac {\log (a+b \text {arcsinh}(c x))}{2 b c}-\frac {\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 b c} \]

[Out]

1/2*Chi(2*(a+b*arcsinh(c*x))/b)*cosh(2*a/b)/b/c+1/2*ln(a+b*arcsinh(c*x))/b/c-1/2*Shi(2*(a+b*arcsinh(c*x))/b)*s
inh(2*a/b)/b/c

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {5791, 3393, 3384, 3379, 3382} \[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 b c}-\frac {\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 b c}+\frac {\log (a+b \text {arcsinh}(c x))}{2 b c} \]

[In]

Int[Sqrt[1 + c^2*x^2]/(a + b*ArcSinh[c*x]),x]

[Out]

(Cosh[(2*a)/b]*CoshIntegral[(2*(a + b*ArcSinh[c*x]))/b])/(2*b*c) + Log[a + b*ArcSinh[c*x]]/(2*b*c) - (Sinh[(2*
a)/b]*SinhIntegral[(2*(a + b*ArcSinh[c*x]))/b])/(2*b*c)

Rule 3379

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3382

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rule 3384

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3393

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)

Rule 5791

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[(1/(b*c))*Simp[(d
 + e*x^2)^p/(1 + c^2*x^2)^p], Subst[Int[x^n*Cosh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSinh[c*x]], x] /; Free
Q[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\cosh ^2\left (\frac {a}{b}-\frac {x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{b c} \\ & = \frac {\text {Subst}\left (\int \left (\frac {1}{2 x}+\frac {\cosh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{2 x}\right ) \, dx,x,a+b \text {arcsinh}(c x)\right )}{b c} \\ & = \frac {\log (a+b \text {arcsinh}(c x))}{2 b c}+\frac {\text {Subst}\left (\int \frac {\cosh \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{2 b c} \\ & = \frac {\log (a+b \text {arcsinh}(c x))}{2 b c}+\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Subst}\left (\int \frac {\cosh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{2 b c}-\frac {\sinh \left (\frac {2 a}{b}\right ) \text {Subst}\left (\int \frac {\sinh \left (\frac {2 x}{b}\right )}{x} \, dx,x,a+b \text {arcsinh}(c x)\right )}{2 b c} \\ & = \frac {\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 b c}+\frac {\log (a+b \text {arcsinh}(c x))}{2 b c}-\frac {\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (\frac {2 (a+b \text {arcsinh}(c x))}{b}\right )}{2 b c} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.77 \[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\frac {\cosh \left (\frac {2 a}{b}\right ) \text {Chi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )+\log (a+b \text {arcsinh}(c x))-\sinh \left (\frac {2 a}{b}\right ) \text {Shi}\left (2 \left (\frac {a}{b}+\text {arcsinh}(c x)\right )\right )}{2 b c} \]

[In]

Integrate[Sqrt[1 + c^2*x^2]/(a + b*ArcSinh[c*x]),x]

[Out]

(Cosh[(2*a)/b]*CoshIntegral[2*(a/b + ArcSinh[c*x])] + Log[a + b*ArcSinh[c*x]] - Sinh[(2*a)/b]*SinhIntegral[2*(
a/b + ArcSinh[c*x])])/(2*b*c)

Maple [A] (verified)

Time = 0.31 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.82

method result size
default \(-\frac {{\mathrm e}^{\frac {2 a}{b}} \operatorname {Ei}_{1}\left (2 \,\operatorname {arcsinh}\left (c x \right )+\frac {2 a}{b}\right )+{\mathrm e}^{-\frac {2 a}{b}} \operatorname {Ei}_{1}\left (-2 \,\operatorname {arcsinh}\left (c x \right )-\frac {2 a}{b}\right )-2 \ln \left (a +b \,\operatorname {arcsinh}\left (c x \right )\right )}{4 b c}\) \(67\)

[In]

int((c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x,method=_RETURNVERBOSE)

[Out]

-1/4*(exp(2*a/b)*Ei(1,2*arcsinh(c*x)+2*a/b)+exp(-2*a/b)*Ei(1,-2*arcsinh(c*x)-2*a/b)-2*ln(a+b*arcsinh(c*x)))/b/
c

Fricas [F]

\[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

[In]

integrate((c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(c^2*x^2 + 1)/(b*arcsinh(c*x) + a), x)

Sympy [F]

\[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int \frac {\sqrt {c^{2} x^{2} + 1}}{a + b \operatorname {asinh}{\left (c x \right )}}\, dx \]

[In]

integrate((c**2*x**2+1)**(1/2)/(a+b*asinh(c*x)),x)

[Out]

Integral(sqrt(c**2*x**2 + 1)/(a + b*asinh(c*x)), x)

Maxima [F]

\[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

[In]

integrate((c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="maxima")

[Out]

integrate(sqrt(c^2*x^2 + 1)/(b*arcsinh(c*x) + a), x)

Giac [F]

\[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int { \frac {\sqrt {c^{2} x^{2} + 1}}{b \operatorname {arsinh}\left (c x\right ) + a} \,d x } \]

[In]

integrate((c^2*x^2+1)^(1/2)/(a+b*arcsinh(c*x)),x, algorithm="giac")

[Out]

integrate(sqrt(c^2*x^2 + 1)/(b*arcsinh(c*x) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1+c^2 x^2}}{a+b \text {arcsinh}(c x)} \, dx=\int \frac {\sqrt {c^2\,x^2+1}}{a+b\,\mathrm {asinh}\left (c\,x\right )} \,d x \]

[In]

int((c^2*x^2 + 1)^(1/2)/(a + b*asinh(c*x)),x)

[Out]

int((c^2*x^2 + 1)^(1/2)/(a + b*asinh(c*x)), x)